
Nat Pryce

Wisdom of the Ancients

info@natpryce.com | @natpryce | github.com/npryce | speakerdeck.com/npryce

What it was like when I started

I spent very little of my time writing code

… any program is a model of a model within a theory
of a model of an abstraction of some portion of the
world or of some universe of discourse.

–Manny Lehman

Programs, Life Cycles, and Laws of Evolution. 1980

Lehman's categories of software system

S-type formally defined by and derivable from a specification

P-type solves a real-world problem but does not affect the world it models

E-type embedded in the world it models; its operation changes that world

Law of Continuous Change

Any software system used in the real-world
must change or become less and less useful in
that environment.

Law of Increasing Complexity

As a system evolves, its complexity increases
unless work is done to maintain or reduce it.

–Manny Lehman (1974, ...)

Evolution processes [of software systems]
constitute multi level, multi loop, multi agent
feedback systems

–Manny Lehman (1974, ...)

Principle of Uncertainty

The outcome, in the real world, of software
system operation is inherently uncertain with
the precise area of uncertainty also unknown

–Manny Lehman (1989)

... conceptual integrity is the most important
consideration in system design.

It is better to have a system omit certain
anomalous features and improvements, but to
reflect one set of design ideas, than to have one
that contains many good but independent and
uncoordinated ideas.

–Fred Brooks

The Mythical Man Month. 1975

How can we apply
Lehman's insights?

1

Consider the system type when
evaluating a technique or technology

S-programs are … the programming form
from which most advanced programming
methodology and related techniques derive.

–Manny Lehman (1980)

1974
Lehman's laws,
from study of

projects within
IBM

1970 1980 1990 2000 20202010

1990
Johnson &

Opdyke's paper

1991
Griswold's PhD
on restructuring

functional &
procedural code

1992
Opdyke's PhD
on refactoring

object-oriented
code

1997
Smalltalk

Refactoring
Browser

1999
Refactoring
by Fowler

1999
Roberts' PhD

on the Smalltalk
Refactoring

Browser

2000
JetBrains

Renamer for
Java

2001
IntelliJ and

Eclipse
version 1

Refactoring tools: a prehistory

1984
Thinking Forth

by Brodie

...as programming methodology evolves still
further, all large programs (software
systems) will be constructed as structures of
S-programs.

–Manny Lehman (1980)

2

Nurture your feedback cycles

SystemTest
Automation

How good is the system?

test results = external quality feedback

changes = internal quality feedback

Re
fa

ct
or

 &
 a

bs
tr

ac
t

Eliminate source
of developer

error

Refactor & abstract

test results = external quality feedback

SystemTest
Automation

instrumentation, bugs = external quality feedback

How good are the tests?

changes = internal quality feedback

Re
fa

ct
or

 &
 a

bs
tr

ac
t

Eliminate source
of developer

error

test results = external quality feedback

instrumentation, bugs = external quality feedback

difficulty testing = internal quality feedback

Refactor & abstract

SystemTest
Automation

How maintainable is the software?

Eliminate source
of developer

error

test results = external quality feedback

instrumentation, bugs = external quality feedback

difficulty testing = internal quality feedback

Refactor & abstract

changes = internal quality feedback

SystemTest
Automation

Re
fa

ct
or

 &
 a

bs
tr

ac
t

How maintainable are the tests?

changes = internal quality feedback

instrumentation, bugs = external quality feedback

difficulty testing = internal quality feedback

Re
fa

ct
or

 &
 a

bs
tr

ac
t Refactor & abstract

test results = external quality feedback

SystemTest
Automation

Eliminate source
of developer

error

Can we eliminate the need for tests?

Tests

Funnel diagram by http://unitydc.co.uk/funnels

Refactor preventative
measures to favour
faster feedback

The Funnel of Feedback

Types instead of Tests?!?!

changes = internal quality feedback

instrumentation, bugs = external quality feedback

difficulty testing = internal quality feedback

Re
fa

ct
or

 &
 a

bs
tr

ac
t Refactor & abstract

test results = external quality feedback

SystemTest
Automation

Eliminate source
of developer

error

A cybernetic system

3

Accept uncertainty

Why are developers uncomfortable with design as
continual, gradual, never-ending adaption?

Weltanschauung

Modernism

Modernist [styles] shared certain underlying
principles: a rejection of history and applied
ornament; a preference for abstraction; and
a belief that design and technology could
transform society.

http://www.vam.ac.uk/page/m/modernism/

Eames Chair

The dynamic nature of [Taoist and Zen]
philosophy laid more stress upon the process
through which perfection was sought than upon
perfection itself. True beauty could be
discovered only by one who mentally completed
the incomplete. ... Uniformity of design was
considered fatal to the freshness of imagination.

–Kakuzo Okakura

The Book of Tea, 1906

Wabi sabi, kintsugi bowl

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy. Change Bursts as Defect Predictors.
2010

“What happens if code changes again and again in
some period of time? … Such change bursts have the
highest predictive power for defect-prone
components [and] significantly improve upon
earlier predictors such as complexity metrics, code
churn, or organizational structure.”

1. Consider the system type

2. Nurture your feedback cycles

3. Accept uncertainty

Vielen Dank
Thank you

info@natpryce.com | @natpryce | github.com/npryce | speakerdeck.com/npryce

(who are hiring in London & Berlin)

https://www.springernature.com/gp/group/careers

Thanks to

